ضخامت سنج هاي ماوراء صوت ( Ultrasonic ) براي اندازه گيري ضخامت مواد از يك سمت آنها ، استفاده مي شوند. اولين ضخامت سنج تجاري ، از اصول كاري ردياب هاي صوتي ( Sonar ) پيروي مي كرد ، كه در سال 1940 معرفي شد . وسيله هاي كوچك قابل حمل كه تنوع در كاربرد داشتند از 1970 متداول شدند. اخيرا پيشرفت در تكنولوژي ميكروپروسسورها منجر به مرحله جديدي از عملكرد پيچيده و كاربرد آسان اين وسيله ها شده است. كار تمامي سنجه هاي ماوراء صوت بر پايه اندازه گيري بازه زماني عبور پالس هاي فركانس صوتي از ميان ماده مورد آزمايش است . فركانس يا گام اين پالس هاي صوتي فراتر از حد شنوايي انسان است ، به طور كلي يك تا بيست ميليون سيكل در ثانيه ، در مقابل براي گوش انسان حد ، بيست هزار است . اين امواج فركانس بالا توسط وسيله اي توليد و دريافت مي شوند كه مبدل ماوراء صوت ناميده مي شود ؛ كه انرژي الكتريكي را به لرزش هاي مكانيكي تبديل مي كند و بلعكس .
امواج ماوراء صوت بكار رفته در آزمايشات صنعتي به خوبي نمي توانند از ميان هوا عبور كنند ؛ به همين دليل از يك جفت واسط مثل پروپيلن گليكول ؛ گليسرين ، آب يا نفت استفاده مي شود كه اغلب بين مبدل و قطعه قرار مي گيرد. بيشتر سنجه هاي ماوراء صوت از روش " ضربه - انعكاس " براي اندازه گيري استفاده مي كنند . امواج صوتي توليد شده توسط مبدل ، وارد قطعه شده و از بخش ديگر منعكس مي شوند و به مبدل بازمي گردند . سنجه ، بازه زماني بين پالس مرجع يا اوليه را با انعكاس آن با دقت اندازه گيري مي كند. به طور نمونه اين بازه زماني تنها يك ميليونيم ثانيه است. اگر سنجه با سرعت صوت در آن نمونه برنامه ريزي شده باشد ، مي توان ضخامت را بوسيله روابط ساده رياضي از روي اين بازه زماني محاسبه كرد.
t = VT/2
ضخامت قطعه = t
سرعت صوت در آن ماده = V
زمان رفت و برگشت اندازه گيري شده = T
نكته مهم اين است كه سرعت صوت در ماده مورد آزمايش يك بخش ضروري از اين محاسبه است .در مواد متفاوت سرعت انتقال صوت نيز متفاوت است ، و سرعت صوت به طور قابل توجهي با دما تغيير خواهد كرد . بنابر اين ضروري است كه ابزار ماوراء صوت با توجه به سرعت صوت در ماده مورد آزمايش كاليبره شود و دقت اندازه گيري وابسته به اين كاليبراسيون است .
حقيقتا هر ماده مهندسي را مي توان بدين وسيله اندازه گيري كرد . ضخامت سنج ماوراء صوت را مي توان طوري تنظيم كرد كه بتوان فلزات ، پلاستيك ، سراميك ها ، كامپوزيت ها ، اپوكسي ها و شيشه را اندازه گيري كند. همچنين نمونه هاي بيولوژيك و مايع را نيز ميتوان اندازه گيري كرد . موادي كه براي سنجه هاي متداول ، مناسب نيستند شامل چوب ، كاغذ ، بتن و فوم است . اندازه گيري آنلاين يا همزمان پلاستيك هاي اكسترود شده يا فلزات نورد شده ، همچنين اندازه گيري لايه ها يا پوشش در مواد چند لايه نيز ممكن است.
يك ضخامت سنج ماوراء صوت عموما شامل يك مدار گيرنده و فرستنده ، كنترل كننده و زمان سنج منطقي ، مدار محاسباتي ، مدار نمايش گر و يك تامين كننده نيرو است. پالسر، تحت كنترل يك ميكروپروسسور، يك پالس محرك را به مبدل مي فرستد . پالس ماوراء صوت بوسيله مبدل كه به نمونه تست متصل شده ، توليد مي شود. انعكاس ها از انتها يا داخل سطح نمونه بوسيله مبدل دريافت و به سيگنال هاي الكتريكي تبديل مي شوند . و يك آمپليفاير دريافت كننده را تغذيه مي كنند براي آناليز كردن. ميكرو پروسسور كنترل كننده و مدارهاي زمان سنج منطقي پالس را منطبق كرده و و سيگنال هاي انعكاسي مناسب را براي اندازه گيري بازه زماني انتخاب مي كنند . وقتي كه انعكاس ها دريافت مي شوند ، مدار زمان سنجي ، يك بازه برابر با رفت و برگشت پالس صوتي در نمونه تست را بدقت اندازه خواهد گرفت . اغلب اين پروسه چندين بار تكرار شده تا يك مقدار متوسط و پايدار بدست آيد.
سپس ميكروپروسسور اين بازه زماني را همراه با سرعت صوت و داده هاي ذخيره شده در حافظه دستگاه بكار مي برد تا ضخامت را اندازه گيري كند. اين ضخامت سپس نمايش داده شده و به طور متناوب آپديت مي شود . ضخامت خوانده شده همچنين ممكن است در حافظه بيروني ذخيره شود يا به پرينتر انتقال پيدا كند . اغلب ضخامت سنج هاي ماوراء صوت يكي از چهار نوع زير هستند : مبدل - تماسي ، خط تاخيري ؛ شناور و دوجزئي ؛ كه هركدام مزايا و معايب خود را دارند .
مبل تماسي :
ضخامت سنج هايي كه از مبدل با تماس مستقيم استفاده مي كنند به طور كلي در اجرا ساده هستند و به طور گسترده اي در اندازه گيري هاي صنعتي بكار مي روند .بازه هاي زماني عبارت اند از پالس هاي القايي اوليه تا اولين انعكاس منهاي فاكتور تصحيح كننده اي كه حساب ضخامت از سطح ابزار مبدل را دارد و لايه كوپل شده ، همچنين تاخير الكتريكي در ابزار سنجش . به طور ضمني مبدل تماسي بكار گرفته مي شود در تماس مستقيم با قطعه مورد تست .مبدل هاي تماسي براي كاربرد هاي سنجش بجز موارد زير توصيه مي شوند .
مبدل خط تاخيري:
مبدل هاي خط تاخيري از يك سيلندر پلاستيك ، اپوكسي يا سيليكا جوش خورده تشكيل شده اند و به عنوان خط تاخيري بين جزء مبدل و قطعه كار شناخته مي شوند .يك دليل عمده براي استفاده از مبدل خط تاخيري جدا كردن انعكاس ها از پالس هاي محرك در ماده نازك مورد اندازه گيري هست . به عنوان يك موج بر ، خط تاخيري همچنين مي تواند امواج را به قطعه اي كه بسيار داغ است بفرستد تا اندازه گيري بوسيله مبدل تماسي حساس به گرما انجام شود . خط تاخيري را مي توان طوري شكل داد كه به راحتي با سطوح منحني و فضاهاي محدود كوپل شود . زمان بندي انعكاس ها در كاربردهاي خط تاخيري ممكن است يكي ازاين دوحالت باشد .انتهاي خط تاخيري به ابتداي انعكاس ديواره پشتي يا بين انعكاس هاي موفق ديواره . اين نوع زمان سنجي دقت اندازه گيري مواد نازك را بهبود مي بخشد و يا دقت اندازه گيري بيشتر از روش تماسي براي كاربردهاي ويژه است .
مبدل شناور :
مبدل هاي شناور يك ستون آب را براي انتقال انرژي صوتي به داخل قطعه بكار مي برند . آنها را مي توان بكار برد براي اندازه گيري آنلاين توليدات متحرك ، براي اسكن و يا اندازه گيري چرخشي ، يا بهينه سازي در شعاع هاي تيز و شيارها . نوع زمان سنجي مشابه نوع تاخير خطي است .
مبدل دو جزئي :
مبدل هاي دو جزئي اصولا براي اندازه گيري سطوح زبر و خشن مورد استفاده قرار مي گيرند .در آنها مبدل فرستنده و گيرنده جدا از هم هستند كه هر دو روي يك خط تاخيري سوار شده اند در يك زاويه متغيير براي تمركز انرژي يك فاصله انتخاب شده در زير سطح قطعه . همچنين دقت عمل اين نوع كمتر از انواع ديگر است . آنها فقط براي كاربردهاي زبر و خشن طراحي شده اند.
نتيجه گيري : براي هر كاربرد ضخامت سنج ماوراء صوت ، انتخاب سنجه و مبدل وابسته به نوع ماده ، رنج ضخامت ، دقت مورد نياز ، دما و هندسه و ديگر شرايط خاص است .
معمولا ورقهاي رنگي به ورقهايي گفته ميشود كه روي ورق فولادي پس از آمادهسازي (Pretreatment) بصورت اتوماتيك و پيوسته چندلايه رنگ مايع پاشيده ميشود.
فولاد اندودكاري رنگي آمادهسازي شده ارزش افزوده بالايي دارد كه بهترين خواص لايهاي و اندودكاري ارگانيك را داشته و علاوه بر اين زيبايي ظاهري زياد، دوام بالا و مقاومت خوبي در مقابل فرسايش به آن ميدهد.
اصول اندودكاري كلاف
اندودكاري كلاف با اندودكاري كلافهاي آلومينيوم و فولادها، مرحلهاي براي توليد محصولات آلومينيومي يا فولادي نيمه نهايي صنعتي براي مصرف در نماي بيروني ساختمان، ماشين رختشويي و ديگر لوازمات يا كالاهاي خانگي است.
اندودكاري يا پوششدهي در برابر خوردگي يا فرسايش ايجاد مقاومت كرده، رنگ و بافت مقاوم سطحي به ورق ميدهد.
پس از آنكه تسمه فلزي اندودكاري شد، پانلها برش داده، شكلدهي شده و اندازه ميشود كه پس از آن مرحله بسيار پيچيدهاي مانند فرآيند كشش عميق و كلافدهي آغاز ميشود.
پوششدهي سطحي بايد بتواند در مقابل آسيبهاي مكانيكي، گرمايي، شيميايي و رطوبت مقاومت باشد.
بدليل اينكه يك ساختمان بايد در مقابل آثار مخرب باد، باران و نورخورشيد مقاوم بوده و در بخش لوازم خانگي سطح آن در معرض انواع استفادههاي غلط در طول مصرف آن قرار ميگيرد، پس علاوه بر موارد فوق كلافهاي اندودكاري شده كاربردهاي متفاوت و چندگانهاي دارند.
براي هر ماده و در هر مرحلهاي از مراحل مختلف توليد يك دانش فني شناخته شدهاي وجود دارد كه نمايانگر دانش كنوني در مورد مواد مختلف و فرآيند آن است.
رنگ
سالهاست كه صنعت ساختماني و توليدكنندگان لوازم خانگي، روند خودروسازان يعني كاربرد رنگهاي متاليك را دنبال ميكنند.
با توجه به اينكه از نظر تاريخي اين رنگها فقط در اندودكاري لايه بيروني (topcoats) پلياستر، پلي اروتان يا پلي ويني ليدين فلورايد (PVDF) استفاده ميشوند، يك فرآيند با فرمول خاص رنگهاي متاليك درخشاني را ايجاد ميكند، علاوه بر اين براي پلاستيسول PVC كاربرد دارد.
لايههاي زيرين
اندودكاري رنگي روي لايههاي متعددي انجام ميشود كه محصولات اقتصادي و كيفي توليد شود تا لايه بيروني با شرايط محيطي تناسب داشته يا مقاومت باشد. لايههايي كه معمولا در روش اندودكاري استفاده شده، به شرح زير هستند:
ـ فولاد گالوانيزه گرم غوطهور
ـ فولاد الكترو گالوانيزه
ـ گالواليوم
ـ ورقهاي گالبو
ـ آلومينيوم
براي انتخاب نوع درست اندودكاري لايه بايد هر مادهاي كه مصرف و در هر مرحله اتخاذ شده را در مراحل مختلف توليد بشناسيم.
توليدكننده بايد دانش و آگاهي كافي در مورد ماده و فرآيند آن داشته باشد.
آمادهسازي
آمادهسازي لايه مهمترين عمليات لازم براي چسبندگي و قابليت شكلپذيري ورقهاي فولادي قبل از مرحله پوششدهي با رنگ است.
مهمترين توليدكنندگان ورقهاي رنگي در هند به جاي اندودكاري با فسفات روي ورق گالوانيزه از تكنولوژي No-Rinse (بدون شستوشو) استفاده ميكنند، (چون براي نگهداري يا شستوشو و ساختار كاملا يكپارچه اندودكاري آن بهتر است و همچنين ميتواند به تقاضاي مصرفكنندگان نهايي براي قابليت انعطافپذيري بيشتر ورق اندودكاري شده پاسخ دهد.
آمادهسازي اندودكاري No-Rinse يك لايه بسيار نازك از عمليات شيميايي است كه سطح اندودكاري فولاد را به لايه رنگ بعدي ميچسباند تا چسبندگي مطلوب، ضدفرسايش و مقاومت يا دوام لايه فولاد افزايش پيدا كند.
زيرچسبها (Primer)
پس از آمادهسازي زيرچسب يكنواختي روي سطح آماده شده بهكار ميرود. زيرچسب انعطافپذيري سيستم رنگ را بالا برده و موجب افزايش زياد مقاومت در برابر فرسايش ميشود، چون عوامل ضدفرسايشي دارد. زيرچسب در كورهاي كه درجه حرارت آن دقيقا قابل كنترل است، پخته ميشود.
با توجه به رزينهاي مختلف مانند اپوكسي، پلياستر، پلي اورتان و PVC زيرچسبهاي گوناگوني وجود دارد. زيرچسب اپوكسي براي پوشش سقفها مناسب است، چون رنگدانه كرومات دارد.
اندودكاري كرومات و اندودكاري كلاف بدون كرومات
از نظر تاريخي تركيبات كروميوم مهمترين عوامل ضدخوردگي در رنگهاي اندودكاري كلاف و آمادهسازي است. معمولا در يك سيستم دو لايه اندودكاري شامل يك لايه يا پوشش بيروني و يك زيرچسب روي سطح فلز آماده شده، بهكار گرفته ميشود.
در گذشته اكثرا زيرچسبهاي اندودكاري كلاف تركيبات كروميوم مانند استرونيتوم و كرومات روي دارند تا مقاومت ضدخوردگي لازم محصول نهايي بدست آيد. تركيبات كروميوم هگزاولنت (كروميوم 6) بعنوان يك اتصالدهنده شيميايي ـ الكترونيكي عمل ميكند كه ميتواند مانع واكنشهايي روي بيشتر سطوح شود، اما تركيبات كروميوم هگزاولنت در اندودكاري صنعتي فلزات كاربرد وسيعي دارد كه بعنوان سرطانزا (طبقهبندي يك و 2) و نيز بعنوان ماده سمي و خطرناك براي محيطزيست (براساس اصلاحيه نهم، بيست و هشتمين انطباقيه پيشرفت فني دستورالعمل مواد خطرناك EEC) طبقهبندي شده است. در حقيقت زمانيكه رنگدانهها در غشاء نازك رنگ رسوب ميكنند، خطراتي سلامتي انسان را بهطور جدي تهديد نميكند، اما بايد خطرات مربوط به توليد اين مواد در هر مرحله از عمر آن و هر فرآيند مورد توجه قرار گيرد.
جايگزينها
در چارچوب برنامه توسعه پايدار و مراقبت مسئولانه، در اوايل دهه 1980 اندودكاري BASF شروع به كشف گزينههايي به جاي رنگدانههاي كرومات سمي كرد. از ابتدا مشخص بود كه يك جايگزين براي زيرچسبهاي محتوي كرومات نه تنها بدون كرومات بود بلكه بايد خود را با عملكرد رقباي حامل كرومات خود منطبق كرده يا از آن پيشي بگيرد. تا دهه 1980 اين شرايط براي لوازم خانگي برقرار نبود، چون شرايط آب و هوايي متفاوت بوده و نياز به شرايط ضدزنگزدگي در داخل خانه نسبت به پانلهايي كه خارج از فضاهاي سرپوشيده استفاده ميشوند كمتر است.
تا سال 1992، اولين نسل آسترها يا زيرچسبهاي بدون كرومات معمولي براي كاربردهاي خارجي در سال 1995 بهكار گرفته شد كه يك دستاورد مهم ديگر محسوب ميشود.
زيرچسب معمولي بدون كرومات BASF روي سطوح فولادي گالوانيزه نتايج بسيار بهتري را نسبت به اندودكاري آماده شده بدون كرومات و با كرومات نشان داد. تطابق پيوسته و بهينهسازي در سالهاي بعدي منتج به بهبود بيشتر شد.
سيستم رزين اصلي زيرچسبهاي بدون كرومات شامل تركيبي از پلياستر با وزن مولكولي بالا و رزينهاي اپوكسي هستند كه در يك سيستم براساس آمينورزينها داراي اتصال متقاطعي هستند. علاوه بر اين، رنگدانه نه تنها بدون كرومات بوده بلكه همچنين عاري از هر فلز سنگين ديگري يا مواد سرطانزا است.
براساس نظريات كارشناسان، صنعت ساختماني تا حدي محافظهكار است و بايد از مزيتها و مزاياي عملكرد بلندمدت استفاده از اندودكاري بدون كرومات مطمئن شود. اين به نفع اندودكاران كلاف خواهد بود كه به سمت استفاده از اندودكاري كلاف بدون كرومات حركت كرده و نتايج كار را پيگيري كنند.
پوشش بيروني
پس از آمادهسازي سطح آستر يا زيرچسب بصورت يكنواختي لايه ضخيمي را پوشش داده و سپس در كوره پخته ميشود.
لايه رويي شامل تركيبي از رنگدانههاي متفاوت و افزودنيها است كه رنگ لازم ورقهاي رنگاندود را مشخص ميكند و ديگر خواص مانند مقاومت ماوراء بنفش را بوجود ميآورد. محصولات اندودكاري شده پس از اين مرحله قبل از روشن شدن كاربردهاي بيشتر دقيقا تست ميشوند.
عمدتا بازارهاي پوشش سقفها و ساختماني براي ورقهاي اندودكاري رنگي از پوششهاي بيروني استفاده ميكنند كه روي پلياستر، پلي وينيلندن فلورايد (PVDF)، پلياستر سيليكون اصلاح شده (SMP) و پلاستيسول براي اقتصادي بودن و دوام پوشش داده ميشود.
مزيتهاي پوشش رنگ روي فولاد گالوانيزه
زمانيكه رنگ و فولاد گالوانيزه با يكديگر استفاده ميشوند، سيستم كنترل ضدزنگ بهكار گرفته شده به تنهايي به هر كدام از سيستمهاي بهكار رفته برتري دارد. اندودكاري گالوانيزه از فولاد زيرين يا پايه حفاظت ميكند، حفاظت از كاتد يك و ماده حايل را برقرار كرده و از ميزان رنگ به حدي كم ميشود كه به مصرف روي اضافه شده و به عمر فولاد گالوانيزه نيز ميافزايد.
زمانيكه رنگ تحت تاثير شرايط آب و هوايي قرار گرفته و آسيب ميبيند، روي موجود يك حفاظت كاتدي و ماده حايل را ايجاد ميكند و پس از رفتن پوسته رنگ مانع زنگزدگي فولاد ميشود. بدليل اين اثر مكمل براي اندودكاري دوبلكس، از نظر كمي خاصيت ضدزنگ توليد شده 5/1 تا 5/2 برابر طولانيتر از طول عمر روي و رنگي است كه مجزا استفاده ميشود، بعنوان مثال اگر عمر اندودكاري گالوانيزه روي فولاد به حدود 15 سال برسد و طول عمر اندودكاري رنگ روي فولاد تقريبا 5 سال باشد، اگر اندودكاري گالوانيزه و رنگ هر دو همزمان استفاده شوند، عمر آن به 35 سال خواهد رسيد كه 7/1 برابر جمع هر سيستمي است كه به تنهايي استفاده ميشود.
انسجام سطحي
توپوگرافي اندودكاري سطحي يك عنصر طراحي بسيار مهمي است، كاربرد كلاف (Roll) اندودكاري در واقع منتج به يك سطح صافي در فرآيند اندودكاري ميشود، بنابراين در دهه 1980 زمانيكه توليدكنندگان لوازم خانگي به استفاده از پانلهاي پيشاندودكاري شده با تركيبي از قطعات اسپري شده روي آوردند، يك عدم تطابق در ظواهر سطحي وجود داشت. فرآيند اندودكاري ضرورت داشت كه نشان دهد فرآيند رنگكاري با استفاده از اسپري از جمله اثر پوست تمساحي يا پرتقالي انجام شده بود بنابراين با بكارگيري آستر يا زيرچسب بافت مخصوص مقابله كه با يك پوشش بيروني مطابق با زيرچسب بود از روي آن مجددا اندودكاري شد. به هرحال در ابتدا به كوششهاي زيادي نياز بود تا بتوان به بافتي با قابليت توليد مجدد دست يافت، اما در اواسط دهه 1990 پس از تلاشهاي لازم ابداعات و فناوريهاي جديدي بهكار گرفته شد كه در حال حاضر بصورت استاندارد براي اندودكاري كلاف در اروپا و كشورهاي صنعتي جهان از آن استفاده ميشود.
علاوه بر جنبههاي طراحي آن، بافت سطح كلاف نيز در فرآيند مزيتهايي را ارايه ميدهد. خواص اصطكاك در قالبها كمتر از اندودكاري صاف سنتي است، علاوه بر اين سطح قويتر است و به آساني در فرآيند مونتاژ صدمه نميبيند.
نتيجهگيري
ورقهاي رنگي بسيار پرارزش بوده و بهترين خواص اندودكاري لايهاي را داشته و ظاهري زيبا و پردوام دارد كه در مقابل زنگزدگي مقاوم است. توليدكنندگان هندي ورق رنگي از پيشرفتهترين فناوريها استفاده ميكنند.
اين فناوري استفاده از فرآيندهاي بدون كرومات در آمادهسازي و رنگهاي اندودكاري كلاف است. اين ورقها بيشتر در صنايع ساختماني و لوازم خانگي كاربرد پيدا ميكند چون اقتصادي بوده و با محيطزيست سازگارتر است.
رفتار مغناطيسي مواد عمدتاً به ساختار الكتروني آنها بستگي خواهد داشت, كه مي توانند دو قطبيهاي مغناطيسي را ارائه دهند. تأثيرات متقابل بين اين دو قطبيها نوع رفتار مغناطيسي را مشخص مي كند.
دو قطبيها- و گشتاورهاي مغناطيسي
رفتار مغناطيسي موارد ناشي از حركت الكترونهاست .هر الكترون در اتم دو گشتاور مغناطيسي دارد. يك گشتاور مغناطيسي از چرخش (اسپين) الكترون حول محور خود و ديگري ازحركت اوربيتالي الكترون حول هسته اتم ايجاد مي شود. درشكل زير هر چرخش الكترون حول محور خودش به عنوان يك دو قطبي مغناطيسي عمل كرده و داراي گشتاور دو قطبي است كه مغناطيس بر ناميده مي شود.
آرايش الكتروني هر سطح انرژي معين مي تواند حداكثر شامل دو الكترون (يك جفت الكترون ) با چرخش (اسپين) مخالف باشد. بنابراين ازآنجا كه گشتاورهاي مغناطيسي هر جفت الكترون درهر سطح انرژي برابر و خلاف جهت يكديگر بوده ودر اغلب موارد آرايش الكترونها در اتمها به صورت جفت هستند. لذا دراين عناصر رفتار مغناطيسي مشاهده نمي شود.
تذكر:
براساس اين استدلال, انتظار مي رود كه هر اتم از عنصر با عدد اتمي فرد يك گشتاور مغناطيسي ناشي از الكترون منفرد داشته باشد, اما اين حالت هميشه برقرار نيست, در اغلب اين گونه عناصر تك الكترون مدار خارجي يك الكترون ظرفيت بوده و به دليل تأثير متقابل الكترونهاي ظرفيت هر اتم به طور متوسط گشتاورهاي مغناطيسي يكديگر را خنثي كرده و ماده در كل , رفتار مغناطيسي نخواهد داشت. اما عناصر معيني, مانند فلزات واسط, داراي سطح انرژي داخلي هستند كهبه طور كامل با جفت الكترون پر نشده است. ساختار الكتروني عناصر اسكانديم (Sc) تا مس(Cu) كه در جدول پايين نشان داده شده است. از اين نوع است.
به استثناي كرم و مس, كه در آنها الكترونهاي ظرفيت در سطح 4s با جفت الكترون پر شده است. تك الكترونها در كرم و مس درنتيجه تأثيرات متقابل باديگر اتمها, اثر خود را از دست مي دهند بنابراين اوربيتالهاي 3d درمس به طور كامل پر است و مس رفتار مغناطيسي از خود نشان نمي دهد. وجود تك الكترونها در لايه هاي الكتروني داخلي مي تواند گشتاورهاي دو قطبي مثبت كوچكي داشته باشد. مانند الكترونهاي اوربيتالهاي 3d در Fe , Co و Ni .
رفتار ديا مغناطيسي در مواد
با تاثير ميدان مغناطيسي خارجي در اتمهاي ماده اي كه در اين ميدان قرار مي گيرد. تعادل الكترونهاي آنها كمي برهم مي خورد و دو قطبيهاي مغناطيسي كوچكي در داخل اتمها ايجاد مي شود. اين دو قطبيها با ميدان مغناطيسي خارجي مخالفت مي كنند. اين كنش يك اثر مغناطيسي منفي ايجاد مي كند كه رفتار ديا مغناطيسي ناميده مي شود. نتيجه رفتار ديا مغناطيسي يك ضريب حساسيت مغناطيسي منفي بسيار كوچك است. رفتار ديا مغناطيسي در بسياري از مواد مانند كادميم, مس, نقره, قلع و روي دردماي معمولي محيط ايجاد مي شود.
رفتار پارامغناطيسي درمواد
بعضي از عناصر واسط و عناصر قليايي خاكي , شامل لايه هاي داخلي با الكترونهاي منفرد هستند.
موقعي كه اين الكترونها با ديگر الكترونهاي ظرفيت ماده به حالت تعادل در نيايند, يك گشتارو مغناطيسي در نتيجه چرخش اين الكترونها باهر اتم همراه مي شود. وقتي اين گونه مواد در اين ميدان مغناطيسي قرار گيرند. با هم رديف شدن گشتاورهاي دو قطبيهاي مغناطيسي اتمها يا مولكولها يك ضريب حساسيت مغناطيسي مثبت كوچكي به دست مي آيد اين اثر رفتار پارا مغناطيسي ناميده مي شود.
رفتار فرو مغناطيسي در فلزات
رفتار ديا مغناطيسي و پارا مغناطيسي با به كارگيري ميدان مغناطيسي خارجي ايجاد مي شود و فقط در مدت زماني كه ميدان مغناطيسي حفظ مي شود خاصيت مغناطيسي باقي مي ماند. اما رفتار فرو مغناطيسي بدون اعمال ميدان مغناطيسي خارجي در بعضي از مواد ظاهر مي شود و اهميت صنعتي زيادي دارد .
رفتار فرو مغناطيسي ناشي از وجود الكترونهاي منفرد درسطوح انرژي 3d فلزات واسط آهن, كبالت و نيكل است چنين رفتاري در فلزات قليايي خاكي كمياب بااوربيتهاي الكتروني منفرد (نيمه پر) 4f و 5d مانند عناصر sm,Eu و Gd كه براي مواد مغناطيسي دائمي وجود دارد. در نمونه هايي از Fe, Co يا Ni باتاثير متقابل اوربيتالهاي الكتروني اتمهاي مجاور اسپين الكترونهاي خارجي پر نشده 3d درامتدادي موازي با يكديگر جهت گيري مي كنند.
اين جهت گيري اسپينهاي اوربيتالهاي با الكترون منفرد باآرايش خاص فقط در دماهاي پايي پايدار است در دماهاي بالاي به دليل ارتعاشات حرارتي و به هم خوردگي پايين پايدار است در دماهاي بالا به دليل ارتعاشات حرارتي و به هم خوردگي شبكه جهت گيري اسپينها خاصيت مغناطيسي محو مي شود. درجه حرارتي كه در آن رفتار فرو مغناطيسي كاملا ناپديد مي شود دماي كوري (Tc) ناميده مي شود براي مثال دماي كوري آهن 7690c , نيكل 3850c و كبالت 11310c است
در پايينتر از دماي كوري جهت گيري دو قطبيهاي مغناطيسي اتمي مواد مغناطيسي در محدوده هاي كوچكي كه حوزه هاي مغناطيسي ناميده مي شود. در رديفهاي خاص و منظمي خواهد بود. اگر حوزه هاي مغناطيسي به صورت اتفاقي و بي نظم جهت گيري يافته باشند. دراين صورت رفتار مغناطيسي در كل نمونه وجود نخواهد داشت. دردماهاي بالاتر ازدماي كوري ماده پارا مغناطيسي است و ديگر به عنوان ماده فرو مغناطيسي هيچ گونه اهميتي ندارد. البته چنانچه اين ماده فرو مغناطيسي به آرامي از درجه حرارت بالاي دماي كوري سردشود. حوزه هاي مغناطيسي شكل مي گيرد و بدين ترتيب رفتار فرو مغناطيسي مجددا پديدار مي شود.
مواد فرو مغناطيسي عمدتا شامل فلزات واسط, آهن, كبالت و نيكل هستند. اما مخلوطي از اكسيد آهن با ديگر اكسيدها به نام مواد مغناطيسي سراميكي نيز وجود دارند. مواد فرو مغناطيسي سراميكي از پختن (زينتر كردن) تحت فشار, در دماي بالا , توليد مي شوند. البته خاصيت مغناطيسي اين گونه مواد مانند مواد فرو مغناطيسي فلزي نيست. عنصر MnO درشكل نمايش داده شده است. اين مواد رفتار ضد مغناطيسي يا غير مغناطيسي دارند.
رفتار فري مغناطيسي در سراميكها
در مواد سراميكي , يونهاي مختلف, گشتاورهاي مغناطيسي متفاوتي دارند دو قطبيهاي يون B در خلاف جهت ميدان صف مي كشند، اما به دليل اينكه قدرت تحمل دو قطبيها برابر نيستند، نتيجه، ظاهر شدن رفتار مغناطيسي و مغناطيس شدن ماده است.مواد فري مغناطيسي مي توانند كاربرد ميدان اعمالي را بهبود بخشند. فريتها داراي هدايت الكتريكي كمي بوده و بدين دليل براي بسياري از كاربردهاي الكترونيكي سودمندند.
چگونگي تشكيل مغناطيسي نرم و سخت
اثر حذف ميدان: تمام مواد فرو مغناطيسي درميدان مغناطيسي خارجي، مغناطيس مي شوند، اما نوع رفتار مغناطيسي بعد از حذف ميدان در آنها بسيار متفاوت است. بسياري از مواد به آساني مغناطيس مي شوند و بعد از حذف ميدان، خاصيت مغناطيسي خود را نيز به آساني از دست مي دهند. اين گونه مواد، مواد مغناطيسي نرم ناميده ميشوند. در مقابل اين مواد، موادي كه به سختي مغناطيس مي شوند و پس از حذف ميدان مغناطيسي خارجي رفتار مغناطيسي خود را هنوز درحد بسيار بالايي حفظ مي كنند، مواد مغناطيسي سخت ناميده مي شوند. مواد مغناطيسي سخت براي ساخت مغناطيسهاي دائمي به كار مي روند.
مواد مغناطيسي
فلزات مغناطيسي : آهن خالص، نيكل و كبالت معمولاً براي كاربردهاي الكتريكي به كار نميروند، زيرا كه آنها الكتريكي و حلقه هيسترزيس نسبتاً بزرگي دارند كه به اتلاف بيش ازحد توان منجر ميشود. علاوه بر آن، آنها مغناطيسهاي دائمي ضعيفي هستند و حوزهها در آنها به راحتي جهت گيري مجدد مييابند و مغناطيس باقيمانده و حاصلضرب BH درمقايسه با آلياژهاي پيچيده كمتر است، در نتيجه وجود بعضي عيوب درشبكه كريستالي، تغييراتي در خواص مغناطيسي رخ ميدهد. نابجاييها، مرزدانهها، مرزهاي بين فازهاي چند گانه و عيوب نقطهاي به قفل شن مرزهاي حوزهها كمك ميكنند. دراين صورت موقعي كه ميدان مغناطيسي حذف شود، جهتگيري حوزهها حفظ ميشود.
انواع مواد مغناطيسي
1-آلياژهاي آهن – نيكل
بعضي از آلياژهاي آهن- نيكل، مانند پرم آلوي (%55Fe-% 45Ni)، نفوذ پذيري بالايي دارند، كه اين خاصيت آنها را به عنوان مغناطيسهاي نرم مفيد ساخته است. به عنوان مثال ميتوان از هد نام برد، كه اطلاعات را بر ديسكت كامپيوتر ذخيره ميكند يا ميخواند، هنگامي كه ديسكت ميچرخد، در زيرهد ، جريان، يك ميدان مغناطيسي درهد ايجاد ميكند . ميدان مغناطيسي در هد، به نوبه خود، بخشي از ديسكت را مغناطيسي ميكند جهت اين ميدان در هد جهت ذرات مغناطيسي موجود در ديسكت را تعيين كرده و نيتجتا اطلاعات را ذخيره مي كند. اطلاعات ميتواند با چرخيدن مجدد ديسكت در زير هد مجددا كسب شود. محدوده مغناطيس شده در ديسكت جرياني در هد ايجاد ميكند. جهت اين جريان به جهت ميدان مغناطيسي در ديسكت بستگي دارد.
2-آهن – سيليسيم
با افزودن 3 تا %5Si به آهن آلياژي به دست ميآيد كه بع از فرآيند خاصي (نورد و آنيل كردن) در كاربردهاي الكتريكي ، مانند موتورها و ژنراتورها مفيد است . از رفتار مغناطيسي ناهمسانگرد ورق آهن سيليسيم دار، كه در آن دانهها جهتدار شدهاند، استفاده كرد.
3-مغناطيسهاي كامپوزيتي
كامپوزيت لايهاي از ورقهاي نازك آهن- سيليسيمدار با ورقهايي از ماده عايق (دي الكتريكي) توليد ميشود. لايهها مقاومت ويژه مغناطيسهاي كامپوزيتي را افزايش ميدهند و آن را در فركانسهاي پايين و متوسط مناسب ميسازند.
فلزهاي شيشهاي
فلزي بيشكل (غير كريستالي ) اغلب آلياژهاي پيچيده Fe-B با به كارگيري سرعت سرد كردن فوق العاده بالا در حين انجماد ( فرآيند انجماد سريع) توليد ميشوند. شيشههاي فلزي به صورت نوارهاي نازك توليد شده و با انباشتن بر روي هم به مواد بزرگتر تبديل مي شوند. رفتار اين مواد همانند مغناطيسهاي نرم با نفوذ پذيري مغناطيسي بالا خواهد بود. عدم وجود مرزدانهها حركت آسان حوزهها را ممكن ميسازد.
دو روش براي توليد مواد مغناطيسي وجود دارد:
1- تبديل فاز
2- متالورژي پودر
1- آلنيكو ، يكي از متداولترين آلياژهاي فلزي پيچيده ، ساختار تك فازي bcc در دماهاي بالا دارد. اما موقعي كه آلنيكو به آرامي تا زير دماي 8000c سرد شود، فاز دومي با ساختار bcc با رسوبهاي زيادي از آهن ونيكل به دست ميآيد. فاز دوم به اندازهاي ريزاست كه هر ذره رسوب يك تك حوزه است. بدين ترتيب مادهاي مغناطيسي با رفتار مغناطيسي مناسب توليد مي شود. غالبا رديف كردن حوزهها دراين آلياژها بايد با به كارگيري يك ميدان مغناطيسي درحين سرد كردن و تبديل انجام گيرد. آلياژهاي آهن- كرم كبالت ( باحدود %11Co, %28Cr, %61Fe-) از لحاظ ساختار شبيه به آلياژهاي آلنيكو بوده واز جمله آلياژهاي دائمي هستند. اين نوع مغناطيسي بيشتر در گوشيهاي تلفن استفاده مي شوند.
-متالورژي پودر
براي گروهي از آلياژهاي فلزات قليايي خاكي نادر، شامل زاماريم- كبالت به كار ميرود. يك تركيب آن Co5SM تركيب بين فلزي است ، كه PH بالايي نسبت به چرخش مغناطيسي الكترونهاي منفرد در الكترونهاي 4f زاماريم دارد. اين تركيب بين فلزي ترد براي توليد پودر ريزي، كه در آن هر ذره يك حوزه باشد، خرد ميشود. سپس اين پودر، درحالي كه براي جهت گيري و رديف شدن حوزهها در يك ميدان مغناطيسي قرار ميگيرد. متراكم ميشود. فرآيند پخت (زينترينگ) بايد با دقت تمام انجام شود. تا از رشد ذرات جلوگيري شود.
مواد سراميكي فري مغناطيسي
سراميكهاي مغناطيسي متداول فريتها هستند، كه ساختار كريستالي اشپينل دارند. هر يون فلزي در ساختار كريستالي به عنوان يك دو قطبي عمل مي كند. اگر چه گشتاورهاي دو قطبي هر نوع يون ميتواند با ديگري مخالف كند، ولي قدرت تحمل دو قطبيها متفاوتند.
مغناطيسهاي الكتريكي نرم موقعي به دست ميآيد كه يون Fe2+ توسط مخلوطهاي گوناگوني از Mn ، Zn، Ni و Cu جايگزين شود. يونهاي نيكل و منگنز گشتاورهاي مغناطيسي دارند.
كاركرد اين گونه مواد را در فركانسهاي بالا ممكن مي سازد. فريتهايي كه در كامپيوترها به كار ميروند، گروه ديگر مغناطيسهاي سراميكي نرم بر پايه سنگ لعل Y3Fe5O12 هستند. اين اكسيدهاي پيچيده كه ميتوانند با آلومينيم يا كرم به جاي آهن و يا لانتانيم به جاي يتريم جايگزين شده وبهبهود يابند، رفتاري بسياري شبيه فريتها دارند. سنگ ديگر بر پايه گادولينيم و گاليم است كه مي تواند به صورت لايههاي نازك توليد شود. حوزههاي مغناطيسي بسيار كوچك ميتواند در اين لايهها ايجاد شود. اين حوزهها حافظه خود را در نتيجه قطع ناگهاني از دست نميدهند.
مغناطيسهاي سراميكي سخت، كه به عنوان مغناطيسهاي دائمي انتخاب ميشوند شامل اكسيدهاي فلزي پيچيده ديگري هستند ( فريتهاي هگزاگونال ) اين فريتهاي هگزاگونال شامل pbFe12O19, BaFe12o19,SrFe12O19 هستند.
كاربردهاي الكتريكي
مواد فرو مغناطيسي نرم براي بالا بردن ميدان مغناطيسي موقعي كه جريان الكتريكي از ماده عبور مي كند, به كار مي روند كاربرد اين مواد بيشتر به عنوان هسته الكترومعناطيسها، موتورهاي الكتريكي، ترانسفورموتورها، ژنراتورها و ديگر تجيهزات الكتريكي است. ازآنجا كه در اين دستگاهها ميدان مغناطيسي متناوبي به كار مي رود، ماده هسته به طور متناوب و پيوسته داخل حلقه هيسترزيس عمل مي كند.
مواد مغناطيسي براي حافظههاي كامپيوتر
مواد مغناطيسي براي ذخيره سازي اطلاعات كامپيوتر به كار مي روند. حافظه با مغناطيس كردن ماده در جهت معيني پر ميشود. براي مثال، اگر قطب شمال بالا باشد واحد اطلاعاتي ذخيره شده 1 است و اگر قطب شمال پايين باشد يك صفر ذخيره شده است .
فريتهاي مغناطيسي شامل منگنز، منيزيم يا كبالت مي تواند اين خواسته را برآورده سازد.
مواد مغناطيسي براي مغناطيسهاي دائمي
آلياژهاي آهن – نيكل
بعضي از آلياژهاي آهن – نيكل ، مانند پرم آلوي (%55Fe-%45Ni) نفوذ پذيري بالايي دارند، كه اين خاصيت آنها را به عنوان مغناطيسهاي نرم مفيد ساخته است. به عنوان مثال، ميتوان از هد نام برد كه اطلاعات را بر روي ديسكت كامپيوتر ذخيره مي كند.